Zum Ende der Metadaten springen
Zum Anfang der Metadaten

Sie zeigen eine alte Version dieser Seite an. Zeigen Sie die aktuelle Version an.

Unterschiede anzeigen Seitenhistorie anzeigen

« Vorherige Version anzeigen Version 60 Nächste Version anzeigen »

This page contains all important information about the batch system Slurm, that you will need to run software on the HLRN. It does not contain every feature that Slurm has to offer. For that, please consult the official documentation and the man pages.

Submission of jobs mainly happens via the sbatch command using jobscript, but interactive jobs and node allocations are also possible using srun or  salloc. Resource selecttion (e.g. number of nodes or cores) is handled via command parameters, or may be specified in the job script.

Partitions

To match your job requirements to the hardware you can choose among various partitions. Each partition has its own job queue. All available partitions and their corresponding walltime, core number, memory, CPU/GPU types are listed here.

Parameters

ParameterSBATCH flagComment
# nodes-N <#>
# tasks-n <#>
# tasks per node#SBATCH --tasks-per-node <#>Different defaults between mpirun and srun
partition

-p <name>

standard96 (Lise), medium40 (Emmy)

# cores per task

-c <#>interesting for OpenMP/Hybrid jobs
Wall time limit-t hh:mm:ss
Mail--mail-type=ALLSee sbatch manpage for different types
Project/Account-A <project>Specify project for NPL accounting

Job Scripts

A job script can be any script that contains special instruction for Slurm. Most commonly used forms are shell scripts, such as bash or plain sh. But other scripting languages (e.g. Python, Perl, R) are also possible.

Example Batch Script
#!/bin/bash

#SBATCH -p medium40
#SBATCH -N 16
#SBATCH -t 06:00:00

module load impi
srun mybinary

The job scripts have to have a shebang line at the top, followed by the #SBATCH options. These #SBATCH  comments have to be at the top, as Slurm stops scanning for them after the first non-comment non-whitespace line (e.g. an echo or variable declaration).

More examples can be found at Examples and Recipes.

Interactive Jobs

Interactive jobs can be started with the additional option  --pty , e.g.

$ srun --nodes=1 --partition=standard96:test --pty /bin/bash


Important slurm commands

The commands normally used for job control and management are

  • Job submission:
    sbatch <jobscript>
    srun <arguments> <command>
  • Job status of a specific job:
    squeue -j jobID for queues/running jobs
    $ scontrol show job jobID for full job information (even after the job finished).
  • Job cancellation:
    scancel jobID
    scancel -i -u $USER cancel all your jobs (-u $USER) but ask for every job (-i)
    scancel -9 send kill SIGKILL instead of SIGTERM
  • Job overview:
    $ squeue -l --me
  • Job start (estimated):
    squeue --start -j jobID
  • Workload overview of the whole system: sinfo (esp. sinfo --format="%25C %A") , squeue -l

Using the Shared Nodes

We provide a varying number of nodes from the large40 and large96 partitions as post processeing nodes in a shared mode, so that multiple jobs can run at once on a single node. You can request CPUs and memory and should take care, that you do not exceed your limits. For each CPU/Hyperthread, there is about 9.6Gb of Memory on large40:shared or 4 on the large96:shared partition.

The maximum walltime on the shared partitions is currently 2 days.

 Example Job for the shared partition

This is an example for a job script using 10 cores. As this is not a MPI job, srun/mpirun is not needed. This jobs memory usage should not exceedMb

#!/bin/bash
#SBATCH -p large96:shared
#SBATCH -t 1-0 #one day
#SBATCH -n 10
#SBATCH -N 1

python postprocessing.py

Advanced Options

Slurm offers a lot of options for job allocation, process placement, job dependencies and arrays and much more. We cannot exhaustively cover all topics here. As mentioned at the top of the page, please consult the official documentation and the man pages for an in depth description of all parameters.

Job Arrays

If you need to submit a large number of similar jobs, please do not use for loops to submet them, but instead use job arrays (this lessens the burden on the scheduler). Arrays can be defined using the -a <number of jobs> option. To divide your workload on to the different jobs within your jobscript, there are several environment variables that can be used:

 Klicken Sie hier, um zu erweitern...
SLURM_ARRAY_TASK_COUNT
    Total number of tasks in a array. 
SLURM_ARRAY_TASK_ID
    Job array ID (index) number. 
SLURM_ARRAY_TASK_MAX
    Job array's maximum ID (index) number. 
SLURM_ARRAY_TASK_MIN
    Job array's minimum ID (index) number. 
SLURM_ARRAY_TASK_STEP
    Job array's index step size. 
SLURM_ARRAY_JOB_ID
    Job array's master job ID number. 


Example of an array job
#!/bin/bash
#SBATCH -p standard96
#SBATCH -t 12:00:00 #one day
#SBATCH -N 16
#SBATCH --tasks-per-node 96
#SBATCH -a 0-3
#SBATCH -o arrayjob-%A_%a #"%A" is replaced by the job ID and "%a" with the array index.

[...]

  • Keine Stichwörter