Versionen im Vergleich

Schlüssel

  • Diese Zeile wurde hinzugefügt.
  • Diese Zeile wurde entfernt.
  • Formatierung wurde geändert.

...

Compute system Lise at NHR@ZIB contains different Compute partitions for for CPUs and GPUs. Please choose your partition which affects specific configurations ofYour choice for the partition affects

Login nodes

Login authentication is possible via SSH Login.

...

Codeblock
firstline1
titleExample CPU partition
office $ ssh -i $HOME/.ssh/id_rsa_nhr nhr_username@blogin.nhr.zib.de
Enter passphrase for key '...':
blogin1 $

File systems

Each complex has the following file systems available. More information about Quota, usage, and best pratices are available on Fixing Quota Issues. Hints for data transfer are given here.

  • Home file system with 340 TiByte capacity containing $HOME directories /home/${USER}/
  • Lustre parallel file system with 8.1 PiByte capacity containing
    • $WORK directories /scratch/usr/${USER}/
    • $TMPDIR directories /scratch/tmp/${USER}/
    • project data directories /scratch/projects/<projectID>/ (not yet available)
  • Tape archive with 120 TiByte capacity (accessible on the login nodes, only)
Info
Best practices for using WORK as a lustre filesystem: https://www.nas.nasa.gov/hecc/support/kb/lustre-best-practices_226.html

...

To login to system Lise, please

Software and environment modules

...

To avoid conflicts between different compilers and compiler versions, builds of most important libraries are provided for all compilers and major release numbers.

Program build

Please visit the specific workflow pages of our Compute partitions.

Using slurm batch system

To run your applications on the systems, you need to go through our batch system/scheduler: Slurm. The scheduler uses meta information about the job (requested node and core count, wall time, etc.) and then runs your program on the compute nodes, once the resources are available and your job is next in line. For a more in depth introduction, visit our Slurm documentation.

We distinguish two kinds of jobs:

  • Interactive job execution
  • Job script execution

Resource specification

To request resources, there are multiple flags to be used when submitting the job.

...

-p <name>

...

For using compute resources interactively, e.g. to follow the execution of MPI programs, the following steps are required. Note that non-interactive batch jobs via job scripts (see below) are the primary way of using the compute resources.

  1. A resource allocation for interactive usage has to be requested first with the salloc --interactive command which should also include your resource requirements.
  2. When salloc successfully allocated the requested resources, you have to issue an additional srun command to work one of the allocated nodes (see example below) if you want to work on the compute node.
  3. Afterwards, srun or MPI launch commands, like mpirun or mpiexec, can be used to start parallel programs (see according user guides)
Codeblock
languagetext
blogin1 ~ $ salloc -t 00:10:00 -p cpu-clx:test -N2 --tasks-per-node 24
salloc: Granted job allocation [...]
salloc: Waiting for resource configuration
salloc: Nodes bcn[1001,1003] are ready for job
# To get a shell on one of the allocated nodes
blogin1 ~ $ srun --pty --interactive --preserve-env ${SHELL}
bcn1001 ~ $ srun hostname | sort | uniq -c
     24 bcn1001
     24 bcn1003
bcn1001 ~ $ exit
# Exit a second time for Berlin/Lise 
blogin1:~ > exit
salloc: Relinquishing job allocation [...]

Job scripts

Please go to our webpage CPU CLX partition for more details about job scripts. For introduction, standard batch system jobs are executed applying the following steps:

  1. Provide (write) a batch job script, see the examples below.
  2. Submit the job script with the command sbatch (sbatch jobscript.sh)
  3. Monitor and control the job execution, e.g. with the commands squeue and scancel (cancel the job).

Job Accounting

Accounting gives you more information about job accounting.

...

File systems

Each complex has the following file systems available. More information about Quota, usage, and best pratices are available on Fixing Quota Issues. Hints for data transfer are given here.

  • Home file system with 340 TiByte capacity containing $HOME directories /home/${USER}/
  • Lustre parallel file system with 8.1 PiByte capacity containing
    • $WORK directories /scratch/usr/${USER}/
    • $TMPDIR directories /scratch/tmp/${USER}/
    • project data directories /scratch/projects/<projectID>/ (not yet available)
  • Tape archive with 120 TiByte capacity (accessible on the login nodes, only)


Info
Best practices for using WORK as a lustre filesystem: https://www.nas.nasa.gov/hecc/support/kb/lustre-best-practices_226.html


Info
Hints for fair usage of the shared WORK ressource: Metadata Usage on WORK