Versionen im Vergleich

Schlüssel

  • Diese Zeile wurde hinzugefügt.
  • Diese Zeile wurde entfernt.
  • Formatierung wurde geändert.

Inhalt

List of Slurm Partitions

The compute nodes of Lise in Berlin (blogin.hlrn.de) and Emmy in Göttingen (glogin.hlrn.de) are organized via the following SLURM partitions:

Lise (Berlin)

...

Partition (number holds cores per node)

...

Content

Inhalt

Code execution

After creation of

submit the slurm job script to execute the binary on compute nodes.

Kein Format
> sbatch myjobscipt.slurm
Submitted batch job 8028673
> ls slurm-8028673.out
slurm-8028673.out

Partition for CPU CLX

The compute nodes of the CPU cluster of system Lise are organised via the following Slurm partitions.

Partition name

Node count

CPU

Main memory (GB)

Max. nodes
per job

Max. jobs per user (running/ queued)

per user

Usable memory MB per node

CPU

Shared

Charged core-hours per node

Remarkstandard96bcn#
Wall time limit (hh:mm:ss)Remark
cpu-clx948Cascade 9242362512

128 / 500

12:00:00
1204512

16 / 500

362 000Cascade 9242
96
default
partition
standard9632
cpu-clx:test
bcn#1:00:00large96bfn#12
16 dedicated
+128 on demand
362 161 / 500
362 000Cascade 924296test nodes with higher priority but lower walltime
01:00:00
28816 / 500747 000Cascade 9242144fat memory nodes
large96:
test
bfn#1:00:002 dedicated
+2 on demand21 / 500747 000Cascade 9242144fat memory test
nodes with higher priority but
lower walltimelarge96:sharedbfn#48:00:002 dedicated116 / 500

747 000

Cascade 9242144fat memory nodes for data pre- and postprocessinghuge96bsn#24:00:002116 / 500

1522 000

Cascade 9242192

very fat memory nodes for data pre- and postprocessing

gpu-a100bgn#24:00:00363616 / 500

1 000 000

Ice Lake 8360Y600

4 A100 GPUs

gpu-a100:sharedbgn#24:00:005516 / 500

1 000 000

Ice Lake 8360Y150 per GPU

4 A100 GPUs

gpu-a100:shared:migbgn#24:00:001116 / 500

1 000 000

Ice Lake 8360Y21.43 per MIG slice

4 A100 GPUs with 7 1g10gb mig slices per GPU

12 hours are too short? See here how to pass the 12h walltime limit with job dependencies.

Fat-Tree Network of Lise

See OPA Fat Tree network of Lise

Emmy (Göttingen)

Partition (number holds cores per node)

Node name

Max. walltime

NodesMax. nodes
per job
Max. jobs
per user

Usable memory MB per node

CPU, GPU type

SharedNPL per node hourRemarkstandard96

gcn#

12:00:00996256unlimited362 000Cascade 924296default partitionstandard96:testgcn#1:00:008 dedicated
+128 on demand16unlimited362 000Cascade 924296test nodes with higher priority but lower walltimelarge96gfn#12:00:00122unlimited747 000Cascade 9242144fat memory nodeslarge96:testgfn#1:00:002 dedicated
+2 on demand2unlimited747 000Cascade 9242144fat memory test nodes with higher priority but lower walltimelarge96:sharedgfn#48:00:00

2 dedicated

+6 on demand

1unlimited

747 000

Cascade 9242144fat memory nodes for data pre- and postprocessinghuge96gsn#24:00:0021unlimited

1522 000

Cascade 9242192
less wall time
cpu-clx:ssd50362
128/50012:00:00local 2TB SSD for IO
cpu-clx:large287478128 / 50012:00:00fat memory nodes
blogin1-2.nhr.zib.de
cpu-clx:huge215221128 / 50024:00:00

very fat memory nodes for data pre- and

postprocessingmedium40gcn#48:00:00424128unlimited181 000Skylake  614840medium40:testgcn#1:00:00

8 dedicated

+64 on demand

8unlimited

181 000

Skylake  614840test nodes with higher priority but lower walltimelarge40gfn#48:00:00124unlimited

764 000

Skylake  614880fat memory nodeslarge40:testgfn#1:00:00

2 dedicated

+2 on demand

2unlimited

764 000

Skylake  614880fat memory test nodes with higher priority but lower walltimelarge40:sharedgfn#48:00:00

2 dedicated

+6 on demand

1unlimited764 000Skylake  614880fat memory nodes for data pre- and postprocessinggrete
ggpu#48:00:00338unlimited

500 000 MB per node

(40GB HBM per GPU)

Zen3 EPYC 7513 + 4 NVidia A100 40GB
600

see GPU Usage

grete:shared
ggpu#48:00:00381unlimited500 000 MB, 764 000 MB, or 1 000 000 MB per node
(32 GB, 40GB, or 80GB HBM per GPU)

Skylake  6148 + 4 Nvidia V100 32GB,

Zen3 EPYC 7513 + 4 NVidia A100 40GB,

and Zen2 EPYC 7662 + 8 NVidia A100 80GB

150 per GPUgrete:interactive
ggpu#48:00:0061unlimited

764 000 MB (32 GB per GPU)

or 500 000 MB (10GB or 20GB HBM per MiG slice)

Skylake  6148 + 4 Nvidia V100 32GB,

Zen3 EPYC 7513 + 4 NVidia A100  40GB splitted in 2g.10gb and 3g.20gb slices

150 per GPU (V100)

or 47 per MiG slice (A100)

see GPU Usage

A100 GPUs are split into slices via MIG (3 slices per GPU)

grete:preemptible
ggpu#48:00:0061unlimited

764 000 MB (32 GB per GPU)

or 500 000 MB (10GB or 20GB HBM per MiG slice)

Skylake  6148 + 4 Nvidia V100 32GB,

Zen3 EPYC 7513 + 4 NVidia A100  40GB splitted in 2g.10gb and 3g.20gb slices

150 per GPU (V100)

or 47 per MiG slice (A100)

* 600 for the nodes with 4 GPUs, and 1200 for the nodes with 8 GPUs

Which partition to choose?

If you do not request a partition, your job will be placed in the default partition, which is standard96.

...

post-processing

See Slurm usage how to pass the 12h wall time limit with job dependencies.

Which partition to choose?

The default partition cpu-clx is suitable for most calculations. The :test partitions are, as the name suggests, intended for shorter and smaller test runs. These have a higher priority and a few dedicated nodes, but are limited in time and number of nodesprovide only limited resources. Shared nodes are suitable for pre- and postprocessingpost-processing. A job running on a shared node is only accounted for its core fraction (cores of job / all cores per node). All non-shared nodes are exclusive to one job , which implies that full NPL are paid.Details about the CPU/GPU types can be found belowonly at a time.

The network topology is described here.The available home/local-ssd/work/perm storages file systems are discussed in Storage under File Systems.

An For an overview of all Slurm partitions and node statuses is provided bystatus of nodes: sinfo -r
To see For detailed information about a particular nodes type: scontrol show node <nodename>

Charge rates for accounting

Charge rates for the Slurm partitions can be found under Accounting.

Fat-Tree Communication Network of Lise

See OPA Fat Tree network of Lise

List of CPUs

...


Short nameLink to manufacturer specificationsWhere to findUnits per node

Cores per unit

Clock speed
[GHz]

Cascade 9242Intel Cascade Lake Platinum 9242 (CLX-AP)
Lise and Emmy compute partitions
CPU partition "Lise"2482.3
Cascade 4210Intel Cascade Lake Silver 4210 (CLX)blogin[1-8]
, glogin[3-8]
210
2.2Skylake  6148Intel Skylake Gold 6148Emmy compute partitions220
2.
4Skylake 4110Intel Skylake Silver 4110glogin[1-
2
]282.1Tesla V100NVIDIA Tesla V100 32GBEmmy grete partitions4

640/5120*

Tesla A100NVIDIA Tesla A100 40GB and 80GBEmmy grete partitions4 or 8

432/6912*

...