Versionen im Vergleich

Schlüssel

  • Diese Zeile wurde hinzugefügt.
  • Diese Zeile wurde entfernt.
  • Formatierung wurde geändert.

The

...

The following GPU partitions are available on Lise.

...

GPU A100 shares the same slurm batch system with all partitions of System Lise. The following slurm partitions are specific for the GPU A100 partition.

Slurm partitionNode numberCPUMain memory (GB)GPUs per nodeGPU hardwareWalltime (hh:mm:ss)Description
gpu-a100424x A100 per Node34Ice Lake 8360Y10004NVIDIA Tesla A100 80GB 24:00:00full node exclusive
gpu-a100:sharedFIXME51 to 4NVIDIA Tesla A100 80GB shared node access, exclusive use of the requested GPUs
gpu-a100:shared:mig128 (4 x 7)1 to 28 1g.10gb A100 MIG slices

shared node access, shared GPU devices via Multi Instance GPU. Each of the four GPUs is logically split into usable seven slices with 10 GB of GPU memory associated to each slice

gpu-a100:test24NVIDIA Tesla A100 80GB 01:00:00nodes reserved for short job tests before scheduling longer jobs with more resources

See Slurm usage how to pass a 24h walltime limit with job dependencies.

Charge rates

Charge rates for the slurm partitions you find in Accounting.

Examples

Assuming a job script 

Codeblock
languagetext
titleJob script example.slurmExample: exclusive usage of nodes
>#!/bin/bash
#SBATCH --partition=gpu-a100
#SBATCH --nodes=2
#SBATCH --ntasks=8 
#SBATCH --gres=gpu:4

module load openmpi/gcc.11/4.1.4
mpirun ./mycode.bin

you can submit a job to the slurm batch system via the line:

Codeblock
languagetext
titleJob submission
bgnlogin2 $ sbatch example.slurm
Submitted batch job 7748544
bgnlogin2 $ squeue -u myaccount
...


Codeblock
titleExample: Exclusive usage of two nodes with 4 GPUs each
$ srun --nodes=2 --gres=gpu:4 --partition=gpu-a100 example_cmd


>
Codeblock
titleshared usage of a node
Example: Request two GPUs within the shared partition
# Note: The two GPUs may be located on different nodes.
$ srun --gpus=2 --partition=gpu-a100:shared example_cmd

Multi Instance GPU slice on the according partition

...



# Note: Two GPUs on the same node.
$ srun --nodes=1 --gres=gpu:2 --partition=gpu-a100:shared

...

 example_cmd

Lise (Berlin)

...

Partition (number holds cores per node)

...

Max jobs (running/ queued)
per user

...

Usable memory MB per node

...

CPU

...

Charged core-hours per node

...

16 / 500

...

747 000

...

1522 000

...

very fat memory nodes for data pre- and postprocessing

12 hours are too short? See here how to pass the 12h walltime limit with job dependencies.

List of CPUs and GPUs at HLRN

...

Cores per unit

...

Clock speed
[GHz]

...


...

640/5120*

...

432/6912*

...

Codeblock
titleExample: Request a single Multi Instance GPU slice on the according Slurm partition
$ srun --gpus=1 --partition=gpu-a100:shared:mig example_cmd